skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tingle, Jessica_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Crossing traditional disciplinary boundaries can accelerate advances in scientific knowledge, often to the great service of society. However, integrative work entails certain challenges, including the tendency for individual specialization and the difficulty of communication across fields. Tools like the AskNature database and an engineering-to-biology thesaurus partially reduce the barrier to information flow between biology and engineering. These tools would be complemented by a big-picture framework to help researchers and designers conceptually approach conversations with colleagues across disciplines. Here, I synthesize existing ideas to propose a conceptual framework organized around function. The basic framework highlights the contributions of sub-organismal traits (e.g., morphology, physiology, biochemistry, material properties), behavior, and the environment to functional outcomes. I also present several modifications of the framework that researchers and designers can use to make connections to higher levels of biological organization and to understand the influence neural control, development/ontogeny, evolution, and trade-offs in biological systems. The framework can be used within organismal biology to unite subfields, and also to aid the leap from organismal biology to bioinspired design. It provides a means for mapping the often-complex pathways among organismal and environmental characteristics, ultimately guiding us to a deeper understanding of organismal function. 
    more » « less